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The example of the stability problem for stationary vertical rotation of a heavy 
"tuning fork" with a single point is used for showing that the method of stability 
investigation of a mechanical system stationary motions, based on the solution 
of the problem of minimum transformed potential energy of a system [1 - -  6], is 
equally suitable for analyzing "trivial" and "nontriviar' stationary motions for 
which deformable elements of the system are, respectively, in the undeformed 
and the deformed state. Two methods for solving this problem are presented. 
Sufficient stability conditions that impose certain restrictions from below on the 
stiffness of rods and also from above and below on the angular velocity of the 
system uniform rotation are obtained and analyzed. 

The general statement of the problem of motion and stability of an elastic 
body with a cavity containing a fluid was presented by Rumiantsev [1]. The theo- 
rem on stability proved here is an extension of the Routh theorem to systems with 
distributed parameters, and reduces the problem of stability of stationary motion 
to that of minimum (transformed) potential energy W of the system. Solutions 
of a number of problems on the stability of stationary motions of a solid body 
with elastic rods and fluid in potential force fields appear in [ 2 -  5]. Two me-  
thods for establishing conditions for positive definiteness of the second variation 
62 W in investigations of motion stability of mechanical systems consisting of 
absolutely rigid bodies and material points with attached deformable elastic and 
fluid bodies are presented and illustrated in [6] on the example of solutions of 
specific mechanical problems. 

The problem of stability of stationary motions of mechanical systems with dis- 
tributed parameters were investigated in [7 - -  10] (see the bibliography in [7 --  
10]). The problem of stability of the "nontriviar'  state of relative equilibrium 
of an absolutely rigid body with elastic rods is considered in [9], where the " t r i -  

vial" and "nontriviar' equilibrium states of the system are characterized by the 
undeformed and deformed states, respectively. Only trivial states of relative equi- 
librium of rigid bodies with elastic rods were investigated in [ 2 -  6] and [7, 8j, 
It is noted in [9] that the previously used method based on the direct Liapunov 
method cannot be applied for solving problems of stability of the nontrivialstate 
of relative equilibrium of the system, and another method of solution, based on 
the expansion of elastic displacements of rods in series of some complete system 
of functions is proposed. A finite number of first terms was retained in such series 
without any mathematical  substantiation, and the system with distributed para- 
meters is essentially reduced to some system with a finite number of degrees of 
freedom. 
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Stability of stationary rotation of a heavy solid body 47 

i ,  Let us consider the motion of a rigid body with one fixed point and two attached 
thin rectilinear elastic rods, moving in a uniform gravity field. 

We introduce two rectangular coordinate systems: one inertial Oxyz with its origin 
at the fixed point O of the body and the z-axis directed vertically upward, the other 
OXlX2X.3 which is moving with its axes coinciding with the principal axes of the rigid 
body ellipsoid of inertia for point O. Let i~ (v = I ,  2, 3) be unit vectors of axes xv, 
and ~? the unit vector of the z -axis whose projections on tl~x~-axes are W • 

We assume that two identical rods of length I are attached to the body at points N I 
and N2 defined by coordinates N I (0, a, b) and Ns (O,--a, b) . In the undeformed 
state the two rods lie in the plane x 1 = 0  with their free ends pointing in the same di- 
rection parallel to the x s- axis. The planes passing through the geometric axes of rods 
and parallel to planes x I = 0 and x 2 = 0 are the planes of symmetry of the rods. 

We denote by 
u~ (t, s) = ujl (t, s) i~ + uj~ (t, s) i~ + ui3 (t, s) i.~ 
O ~ s ~ l  t > t 0  ( / = i ,  2) 

the vectors of elastic displacements of points of the rod axes. The condition of rod inex- 
tensibility is expressed by formulas [11] 

H," " ~ - -  ,2 ,2 
33 1/$(Ujl -~-Uj2), / : t , 2  ( U ' :  OU/OS) (1.1) 

and the condition for the rods to be fixed at one end to the body provides the boundary 
conditiom 

U j l : U ~ ; $ : O ,  UjI t :Uj2  t =  for s=O, t>~to (1.2) 

It follows from (i. i) that uxa and u2s are quantities of the second order of smallness, 

if uii , ujs , Ujx' and u j2' (] = I, 2) are taken as quantities of the first order. Note that 
equalities (i. i) represent the condition of rod inextensibiUty that is accurate only to 
terms of second order of smallness with respect to the indicated magnitudes. 

We define the potential energy of elastic deformation by formula [11] 
l 

i + E l¢U;: + u; )l lid = -5- 
0 

where E is the Young modulus ; I 1 and 12 are the moments of inertia of the rod pro- 
file about straight lines drawn through its center of gravity paxallel to the x z - and x 2 - 

axes, respectively, and E I  1 and EI~ are flexural rigidities. 
The potential energy of the force of gravity is 

H~ = M g  (xl0T1 -4- x~0T~ + xa0Ts) + (1.4) 
l 
f ,2 ,2 ,2 gzp.  ['h (u~l + u~) + 'r~ (Ul~ + u~)  - %'r~ (l - s) (u~' 1 + u= + U~l + u=)l ds 

0 

where M is the mass of the complete system; xz0, x20 and x30 are the coordinates of 
the system center of mass in the undeformed state ; g is the acceleration of gravity ; 

is the area of the rod cross section, and p is the rod density. Note that formulas (1. 1) 
and (1. 2) were used in the derivation of formula (1. 4). 

The considered system admits integrals of energy T -k I I  ----- const  and of areas 
G . ?  : k : const ,  where T and I I  : ri  d -b rig are the kinetic and the potential 
energies of the system, and G is the vector of kinetic moment of the system about 
point O. 
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We introduce into the analysis a rectangular system of coordinates Ozz'z" that rotates 
at some angular velocity Q about the z-axis. Denoting by G~ the vector of kinetic 
moment of the system about point O in its motion relative to axes Ozz'z", we repre- 
sent the integralofareasin theform Gr'Y + JQ = k,where d is the moment of iner- 
tia of the system about the z-axis defined by 

l 
d ~- J1~'12 -~ J2'~22 + J3~'32 --~ 6{) j' {(1L121 --~/£21) ( t  - -  ~'12) -~ (1. 5) 

0 
/£2 ,2 ,2 

( 12 + u~,,.) (t - -  "r2") - -  (l - -  s) [b + 1/2 (l + s)] (Ull + //'12 "3!- 
,2 ,2 

U21 -~ U22 ) ( t  - -  ~'3 2) - -  2 (UllUl2 + /£21/£~2) 'r1~'2 -~- 
,2 ,2 ~ ,2 

a (1 --  s) (u~ + u12 - -  u21 u22) "r2Z3 - -  2 (b + s) [(un + u21) ~'1 + 

(u12 + u22) ~%] ~'s + 2a [(u12 - -  u22) (1 - -  "f22) + (u2t - -  a n )  ~'l'f2)} ds 

J l ,  J2 and J3 are the principal moment* of inertia of the undeformed system and 
relative to axes Xl, x~ and x 3 

We select ~ so that at any imtant of time the equality Gr'Y = 0 be satisfied. We 
then have J ~  ~ k . arid the energy integral may be pre, ented in the form Tr + W = 
const, where Tr is the kinetic energy of the system relative motion and W is the trans- 

formed potential energy of the system defined by 
k'- 

W ~ -  + I I  (1.6) 

In what follows instead of I'V we consider the functional W , = W +  1] s ~ .(.fz _ t), 
where 3. is the indeterminate Lagrange multiplier. From (1. 3),( 1. 4) and (1. 6) we obtain 
for W ,  the expression 

ks W ,  = $3- + Me (xlO~l + x20~'2 + x30"f3) + 1/2X (~12+'f ( '+ ' f32- i )  + (1. 7) 
/ 

,{) ~ {g [~1 (/£11 + ~21) + ~2 (/£12 + U~2) 1]9.*~3 (l s) (u~ + 
0 

,2 ,2 1 .2 .2 .2 ~2 
U12 "3i- U21 "-~ /£;2)1 "~ / i[E.[z(Ult  @/£91) @ E . ] I  (/£1z -4-/£~)]} ds 

(E = z{)E,) 

2. We obtain the equations of stationary motiom of the system and reasonable boun- 
dary conditions by comlmting and equating to zero the first variation f iW,.  These equa- 
tions are of the form t 

~2  (dl  ~ ~*) ~1 -31- 6{) J' {[g -~- ~'~2 (b -Jr- $) "f3] Q£11.'-~/£~1) -4- Mgxlo (2. l) 
0 

n2  ['(U~I -~ U~I) ~1 + (UllUI2 + //~21/£2 tt) ~ + a (Ull --/£21) ~'2]} ds =: 0 

l 

Mgx~o - -  ~ (d2 - -  ~, ,)  3% + z{) j { [g  + ~ 2  (b + s) "f3] (/£19 "q- /222) -]- 
0 

~2 [(unul~ + u21u~t) "a + a (un - -  u2~) "a + (u~,~ + u~s) "r~ + 
t ,2 ,2 ,2 ,2 

2a (u12 - -  ug2) "f2 + -~- a (l - -  s) (u21 + u22 - -  utl  - -  u12 ) "ft]} d s  = 0 
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l 

- - + I { -  <t - × Mgxso 
0 

,2 ,2 ,2 ~ 2  

t ,2 ,2 ,2 ,2 
(b - ' -  s) (Ul2 -~  u22) ~2 -~  - ~  a (l - -  s) (u21 ~-  u22 - -  U l l  - -  u12)~2] } X 

ds = 0 

E*12un ~v ~- { [ a ~ ) 2 y 2 Y 3  -~- gY3 - -  1/2Q2 (2b + l A- s)(l  - -  7a2)] X 

(l  - -  s) Ull + [u12Yl'~2 U n '} '  ~ - (1 - v?)]  + {g + ~2 [a~2 + 

(b + s) V3I } ~,~ = 0 

E,I lUl2 ~v + {[a~2727a -~- gYa - -  1/2~~2 (2b + l + s)(l  - -  732)] )< 

(l - -  s) u12' + [Uuyly 2 u12 }' ~ - (t - ~ ) 1  + gv2 + ~ [(b + 

S) ?2Y3 - -  a ( t  - -  V22)1 = 0 

E*I2u21 rv - -  {[afl2Y2Y3 - -  gY3 -4- 1/2fl2 (2b ~ l + s)( t  - -  y32)] × 

(l - -  s) u21' + [U22"~lY2 U21 }, f12 - -  ( t  - -  712)1 A- {g  + f12 [(b d-  

S) V3 - -  a v 2 l } V l  = 0 

E,I1u22 tv - -  {[aQ2v2V3 - -  gv3 + 1/2fl~ (2b + I + s)(t  - -  Va2)] × 

(1 - -  s )u2 ;  }' + ~ [unvlv2 - -  u .  (t - vo~)l + gv2 + Q~ [(b + 
s)y2V a + a (t  - -  W2)] = 0 

(Q = k j -1 ,  ~,, = ~,f~-2) 
t ,  s ,  , ,  ~ ,~ '  ~ ,  n ¢  , t ,  

//11 = U12 = U21 = U22 = O, Ul l  = U12 = U21 = U22 = 0 for s = l ( 2 . 2 )  

Boundary conditions (2 .2)  must be supplemented by conditions (1. 1). 
For xlo - -  X2o = 0 Eqs. (2.1)  and boundary conditions (1. 1) and (2.2) admit the 

following particular solution: 

Vl ° = y 2  ° = 0 ,  ys ° = t ,  u u  ° =  u~l ° - = 0 ,  u12 ° -  u~2 ° =  Uo(S) (2.3)  

where u = u 0 (s) is the solution of the boundary value problem 

E , I l u o  Iv + g [(/ - -  s) Uo']' - -  flo 2 (Uo + a) = 0 (2.4)  

Uo (0) = Uo' (o) = Uo" (1) = Uo'" (l) = 0 
with t 

~. ----- ~ . ,~2o=  J3~o 2 - -  Mgx3o --~ 513 y (l - -  s) [g ~- ~o ~ (2b + l -4- s)] Uo'2d$ (2 .5)  
0 

Solution (2.3)  defines the rotation of the system at constant angular velocity ~2 o = 
k0Jo -1 about a vert ical  axis that coincides with the xa-axis  of the ellil:~oid of inertia 
of the rigid body for its fixed point. In the above formula k 0 and J0  ate constants of the 
integrals of ama~ and of the system moments of inertia about the z-axis  for the station- 
ary motion (2.3) .  

$ ,  Let us investigate the stability (definition of stability appears in Sect. 4 of [2]) 
of motion (2.3)  on the asmmption that i t  is unperturbed. 
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The conditions of stability are obtained from the theorem in [1]. as the conditions of 
positive definiteness of the second variation 6 2 W ,  for solution (2.3)  in metric  with re- 
spect to which the functional W ,  is continuous [2]. We shall consider two methods [6] 
for establishing the positive definiteness of 6 2 W , .  

For the perturbed motion we set 73 - t q- 6"/3 , u12 = u 0 (s) + w12and u22 = 
- -  u o (s) + w2~ , and retain previous notation for the remaining quantities. The equality 
V 2 = I implies that  ~V3 = 0 with an accuracy to terms of order of smallness higher 
than the first. Hence it is possible to assume in the calculat ion of 6 2 W ,  that V3 = t .  

From ( l .  7) , (1 .5)  and (2.3)  - -  (2.5)  we obtain 

6 2 W ,  = Q0 ~ [(X, - -  J~) r t  ~ + (X,  - -  J~) r221 + (3 .1)  
I 
S{  ,,2 .2 .2 .,2 

~p E , I ~  (un + u20 -4- E , I 1  (wl~ + w2~) - -  
0 

,2 ,2 ,2 ,3 
g ( l -  s ) (u l t  + u2t + w12 -~ w22) - -  Qo 2 (Ul12-3Fu212"Jf - w122-] - w222 )% 

2 [g -% f~o 2 (b -4- s)] [(ulx q- U21) ~'1 -4- (W12 "-~ W22) ~21 - -  

2flo 2 [a (1 - -  s) Uo' ( w l (  -t- u,~() - -  (2a + no) u.%] 3q} ds + 
l 

~ o l  Oo2 { ~D S (a -~- Uo) (wl, --  w,,) d$} 2 
o 

We rewrite (3 .1)  in the form 

~ W .  : U ('~1, "~2, Uu,  U~l, w12, w22 ) -~- U 1 ( a i d  u21 ) ~1- U 2 (w12 , w~2 ) (3 .2 )  
l 

V = [t~ol~-~02{6P~(a3f- uo)(Wl2-- lb'22)ds} 2 {~1-~- -~ (~',  - -  J 1 )  ~-~o 2 ( 3 . 3 )  

o 
l 

()~* - -  J1)'1 ~ ° ~ P  l [g + ~°~ (b + s)] (Ual + u2 t )ds (  + (k ,  - -  J~ + A) ~o 2 >t 
0 l 

1~% + (X, - -  J~ + A) -~ Q ~ P  I {[g d- ~o 2 (b + s)] (cot2 + w22) - -  
0 

afro 2 (l - -  s) u0' (Wl( + w2~ )} ds 

l S ,,2 .2 ,2 ,2 
U1 : zp { E , I z  (uxa + u~'t) - -  g (l - -  s) (un +/'L21) - -  (3.4) 

0 
l 

~'~02 (Ull 2 -~- U,12)} ds - -  ( ~ ,  - -  J 1 ) - l n o  2 {~0 1 [g "~- a 0 2  (b ~- 8)] (Ull ~[~ u21)d8 )2 
o 

i 
S .2  u2 ,2 ,2 

U~ = ~p { E , I x  (wl~ + w~) - -  g (l --. s) (wt~. + w~) - -  (3.5) 
0 

fie t (wx~ z + wn~)} ds - -  (X, - -  J~ + A)-Xf~o ~ × 
I 

{g + no' + ,) +  no, - + }2 
0 

l 
A = 2~p S (2a + uo) uods (3.6) 

o 
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If conditions ~ , - - Y l > 0  and ~ ,  - -  Js  q- A > 0 that mpresont the mfflcient con- 
ditions of stability of uniform vertical rotation (2.3) of a heavy rigid body with twoiden- 
tical undeformable rods bent according to the law defined by (2. 3) and (2.4), are sat.is- 
fled, then using the Cauchy-Buniakowski inequality, from (3.4) and (3.5) we obtain in- 
equalities t 

Vl > ~ ~ ~E,[8 (u;~ + u;:) - g (z - s)(u;~ + u;~) - c3.7~ 
0 

~'~0 2 ( U l l  2 + U$1 s )  - -  ( ~ ,  - -  J 1 )  - 1  ~o2hl (Un + u~:) 2} d s  

! 
,2 ,2 

0 

Qo ~ (Wl~ ~ + ws,D - -  (~,, - -  ]~ + AY 1 fg~h~ (u,~ + w = ) q  d~ 
l 

hi = ~p S [g + ~°~ (b + s)] s ds, (3. 9) 

0 
l 

h~ = ~p ~ {g + ~02(b + s) + a~o s [ ( / - -  s) Uo']'} s ds 
0 

Let us consider now the foUowing variaUonal problem. Find the minimum x1-4 of 
functional l 

in the class of functions u (s) ( 0 ~ s -~ l ) that are continuously differentjable up to 
and including the fourth order and satisfy the conditions u (0) ~ u' (0) = 0. 

Setting now s = lx for the determination of the constant × we obtain the problem 
of eigenvalues d4u / d2u I 

a--~- 4 × ~,'~ ~ - -  u / =  0 (~, = ~z-~) 

U (O) : ~ x=o \-j~x.,lx= 1 = O, k ~ / x = l  -4- v~¢ ~ ~-=i 

whose characteristic equation is of the form 

A ( × ) = a  ~ + [ ~ s + v x ( l ~ s - - a D + [ ( t  + a D l ~ s + v x ( t - f i D l ×  (3.11) 

c o s a c h f i - - a [ ~ ( l ~  s - a  s + 2 v × ) s i n a s h [ ~ = O  

2a = v× + ] / 4 ×  + vsx  2, 2~ = - -  v x  + ] / -4×  + vsx s 

The sought × is equal to the smallest (positive) root of Eq. (3.11). 
From (3.10) we obtain the inequality 

l 1 

u %  > ~ - ,  ~ (us + ~u ,~) ~ (3. ~ 
0 0 

and, taking it into account, from (3.7) and (3.8) we obtain inequalities 
l 

,2 
Vl  > ap I { [ E , I ~ l - ' s x - -  g ( l - -  s)l (u;: + U2l ) -3 I- 

0 

[E,Isl-*× - -  ~o s - -  ( k ,  - -  J ~ ) - ' f ~ h d  (H,121 + U21) - -  2 (k ,  - -  J~)-'fU~Zhxunu~l} ds 



I 

u ,  > - -  g (z - -  s)j (w;22 + w;:) + 
0 

[E,Ill-4× --  no' --  (~, - -  J ,  + A)-l~oShs] (w~ + w~2) - -  

2 (~,  - -  J~ ÷ A)-lg~oShswa,w~s} ds 

This. with allowance for (3.2) -- (3.5) implies that inequalities 

E , I j  -4 o× > gl, E,I11-4 o× > gl (3.13) 

~,  - -  " / 1 >  2ha~20 -2 ( E , I ,  l-4× --  ~20s) - a ~  0 (3.14) 

~ ,  - -  J ,  + A > 2hs~0 -2 (E,Ial-4× - -  ~20 ' ) -1> 0 

represent sufficient conditions for the positive definiteness of functional 6sW, .  In accor- 
dance with the theorem in [1] we conclude that (3.13) and (3..14) are sufficient condi- 
tions of stability [2] of the unperturbed motion (2.3). 

Conditions (3.13) impose certain restrictions from below on the rigidity of rods, while 
conditions (3.14) impose on ~0 s restrictions from below, as well as from above. This 
feature is characteristic of systems with distributed parameters [2, 4, 6]. Constants )~,, 
A, ha and h s in (3.13) and (3.14) am computed by formulas (2.5), (3.6) and (3.9) for 
a known solution u ---- u 0 (s) of problem (2.4). 

4 ,  Let us describe another method [6] of solving the problem of minimum of func- 
tional 6sW, .  

We shall consider formula (3.1) as functional for fixed Yx and ~/s which will be taken 
as parameters. Let us determine functions Ulx , u~x , was and w~s for which the value 
of (3.1) is stationary. The stationaxity condition (4. 1) yields the boundary value prob- 

lems iv 
E,Isuaa % - g [ ( l - - s )  ual '] '  - -Q02ual  + [ g + ~ o  s (b  %-s)]y1 = 0 (4.1) 

U l l  (0)  = U l l '  (0)  = U l l "  ( l )  = U l l  'it (l) =- 0 

E , I ,u~  v % g [(/ - -  s) u~x']' - -  ~o~Usa %- [g %- ~o 2 (b %- s)]ya = 0 (4. 2) 

~ 1  (o) = ~ 1 '  (o) = u,~" (z) = u , i"  (t) = o 

E,Iaw~ v %- g [ ( / - -  s) w~sl' - -  ~oSWas %- 4J ; lOo s (a %- uo) zp × (4.3) 
t 

f (a %- Uo) (was --  wss) ds %- g'~s%- ~o'(b %- s %- a l ( l  - -  S)Uo ' ] '}  ~'~ = 0 
0 

Was (0 )  = W12' (0 )  = WlS" ( l )  = W12 "if ( l )  = 0 

E,Ixw~ v %- g l ( / - -  s) w~sl' - -  ~o 'w, ,  - -  4J~X~o ~ (a %- Uo) ~p x 
/ 

l (a ~- Uo) (Wls --  w,,) ds %- g'f~ %- ~o' {b -4- s + a [( l --s)  uo']'}T,----O 
0 

to, ,  (0) = w,s'  (0) = wss" (l) = wss" (l) = 0 

Wba~n conditions 
E,I l l -~¢  > ~o s, E , I l l - ~ o  > gl 

( 4 . 4 )  

( 4 .  5 )  
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am satisfied, the solutions of problerm (4. 3) and (4.4)  are the same: /o12 ~ w22. 
In fact, by mbtxacting (4.4)  from (4.3)  we obtain for w ----- wz2 --  wz~ the homogene-  

ous boundary value problem z 

E,liwIV + g[(l--s)  w']'--f2o2w-~-4JoZf~o2(a-+-uo)c~p ~ (a + u o ) w d s : O  (4.6)  
0 

w (o) = w' (o) = w" (~) = w"' (~) = o 

Multiplying this equation termwise by w and integrating from 0 to I with respect to s ,  
we obtain t 

0 0 
whose left-hand part is estimated on the b a ~  of (3.12) as follows: 

l 

(w) ~ .I [(E*Itl-a°× --gl ) w '2 + (E,Izl'-~ -- f~o 2) w2.] ds 
0 

It follows from this that when conditiom (4. 5) are satisfied, problem (4. 6) has the trivial 
solution w = 0 , hence wz2 = w22. 

We represent the solution of problems (4. 1) - -  (4 .4)  in the form 

H'll : //'21 ----- ~ lU*~ Wl 2 = W22 ~ ~2W,  (4 ,  7) 

where u ,  and w ,  ate solutions of the boundary value problems 

E , I 2 u ,  Iv -I- g [ ( / - -  s ) u , ' ] '  - -  f~o2U, + g -+- Go 2 (b -k- s) ----- 0 (4.8)  

u ,  (0) = u , '  (0) = u ,"  (/) = u ," '  (t) = 0 

E , I 2 w ,  Iv + g [(l - -  s) w , ' ] '  - -  f~o 2 w ,  + g --I- f~o 2 {b + s + (4. 9) 

a [ ( / - -  s) u o T }  = 0 

i t  n t 
w ,  (O) = w , '  (O) = w ,  (1) = w ,  ( l )  = O. 

Setting in (3. 1) uzz : y lU,  "~ /)11, U21 ----- yIU,  -~- V2z, wz2 : Y2W* -~ v12 and 
w22 : ~'2w, + v22, we obtain 

6 2 W ,  : [(X, - -  J~) ~o 2 + P~] '~12 + [(X, - -  J~ + A) ~o 2 + P2] %2 + (4. 10) 
l 

I ,2 
0 

,2 ,2 ~ 2 
U12 + /)22 ) - -  ~'~0 2 (U~I + U21 "-~ /)12 + U~2)} d,8 --~ /~xJol~-~o 2 X 

l 

where o t 

P l  = 2¢~p I [g + Q°~ (b + s)] u,ds  
o (4 .  1:1) 
1 

P2 ~-- 2~o I {g + f~°2 (b + s + a [ ( / - -  s) Uo']')} w,ds  
o 

From (4. 10) with allowance for (3.12) we obtain the inequality 
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52W, > l(~,, - -  J1) ~o 2 + P1] T1 ~ -~ [()~, - -  J2 Q- A) f~o 2 @ P d  T2 ~ + 
1 

4Jol-Qo 2 {~p I ( a  @ Uo)(U12- U22)d$}2 -~ - 
0 

/ 

~D I {[Egc[21-4(~N - -  g (1 - -  S)] (Ui2i -~ V221 ) -~ [ E , I 1  l-4(534 - -  g ( 1 -  s)] X 
0 

)(% + + 
( E , [ l r ' ×  - -  ao (% + %)} ds 

which yields conditions of stability of motion (2.3) in the form of the sufficient condi- 
tions of the positive definiteness of functional ~2W,  

E,Iol-4cJ× > gl, E,Izl-aa× > gl (4.12) 

E,L_I-4× > ~o 2, E,Ill-4× > ~o 2 (4, 13) 

()~. - -  J1) ~0 2 x_ p~ > 0, ()~, - -  "12 ~- A) ~0: + P~ > 0 (4.14) 

The mechanical meaning of conditions (4.12) - -  (4. 14) is the same as that of (3.13) 
and (3.14), namely : conditions (4.12) impose on the rigidity of rods restrictions from 
below, conditions (4.13) impose on f2o 2 restrictiom from above, and conditions (4.14) 
impose on the latter restrictions from below. To compute the constants P~ and P2 in 
(4. 14) by formulas (4.11) it is necessary to know not only the solution of problem (2.4), 
but also the solutions of problems (4.8) and (4.9). For an unlimited increase of rod rigi- 
dity (for E - +  oo) we obtain at the limit from (3.13) and (3.14), as well as from (4.12)- 
(4.14) the known sufficient conditions ~.. - -  Jz  > 0 and )~, - -  J.o -~ A > 0 of the 
stability of uniform vertical rotation in a homogeneous gravitation force field of an in- 
variable system comisting of a rigid body with a single fixed point and two identical 
undeformable rods bent in accordance with the law defined by (2.3) and (2.4) and rigid- 
ly attached to it. 

When the gravity force field is absent, conditions (3.14) and (4. 14) can be derived in 
the explicit form, since then the solutions of the boundary problems (2.4), (4.8) and 
(4. 9) are expressed in terms of elementary functions. 
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Electro-gasdynamic flows in inertia-free approximation and those with allowance 
for inertia forces are investigated. Conditions under which inertia effects are con- 
siderable, are determined. Simple analytical solutions are derived for systems of 
electro-gasdynamic equations that describe the motion of particles in a uniform 
external electric field in the presence of tangential discontinuity of gasdynamic 
velocity at the half-plane boundary. The possibility of reverse current generation, 
i .e .  of the return of particles to the emitter is demonstrated. Obtained results 
are compared with data related to inertia-free approximation. A numerical me-  
thod is developed for solving the complete system of equations of electro-gasdy- 
namics with allowance for particle inertia. The proposed method is used for in- 
vestigating the expansion of electro-gasdynamic streams in channels. Results of 
numerical calculations for various values of controlling parameters are presented. 
Effects of inertia are set appart. 

In many applications (such as electron-ion technology, electrically charged jet  streams 
of aircraft engines) solid or fluid particles in a gasdynamic stream become electricaily 
charged, and it is necessary to investigate two-phase electro=gasdynamic flows. General 
equations that define the electro-gasdynamic flow of a mixture of inert gas, particles, 
and ions appear in [1]. 

If the charged particle inertia is small, two-phase flows can be investigated by the me-  
thod developed for solving equations of electro-gasdynamios with the Ohm law formula- 
ted in the inertia-free approximation [ 2 -  4].  Investigation of such two-dimensional 


